2018 – 2019 PCI BIG BEAM THE B.E.A.M. TEAM

0

PRESENTED BY: CHRISTIAN SOUTUS, JACOB SCHANIEL, JORDAN PHELPS, AND SETH MAX

THANK YOU TO OUR SPONSORS

Figure 1 Western Tech. Logo

Figure 3 Utilite Logo

Precast/Prestressed Concrete Institute

Figure 4 PCI Logo

Figure 5 Border Logo

Figure 6 Tpac Logo

THE 2018 – 2019 PCI BIG BEAM COMPETITION INTRODUCTION

3

- 1. Design Accuracy
- 2. Lowest Cost
- 3. Lowest Weight
- 4. Largest Measured Deflection
- 5. Most Accurate Predictions
- 6. Report Quality
- 7. Practicality, Innovation, and Conformance

[1] All competition guidelines stated by PCI Organization

MILESTONES

- Concrete Mix Design
- Cross Section Design / Reinforcement Layout
- Decision Matrix
- Final Beam Selection
- Procurement / Fabrication
- Transportation
- Beam Testing / Structural Analysis

MIX DESIGN

Table 1: Mix Design Properties

Property	Requested	Actual
Unit Weight	144 lb/ft ³	145 lb/ft ³
3-Day Compressive Strength	6,000 psi	8,260 psi
28-Day Compression Strength	8,000	9,770

Figure 7 Broken Cylinder [2]

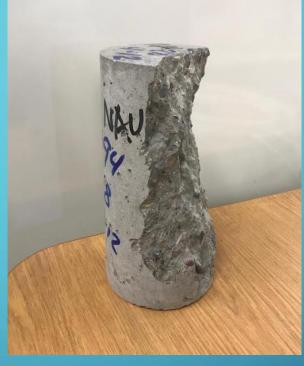


Figure 8 Broken Cylinder [2]

Figure 9 Crocket Breaking Cylinder [6]

5 _~

CROSS SECTION DESIGN/REINFORCEMENT LAYOUT

$$M_{cr} = S_{bc} \left[\frac{P}{A} + \frac{Pe}{S_b} + f_r \right] - M_{nc} \left(\frac{S_{bc}}{S_b} - 1 \right)$$

Eq. 1 Cracking Moment [3]

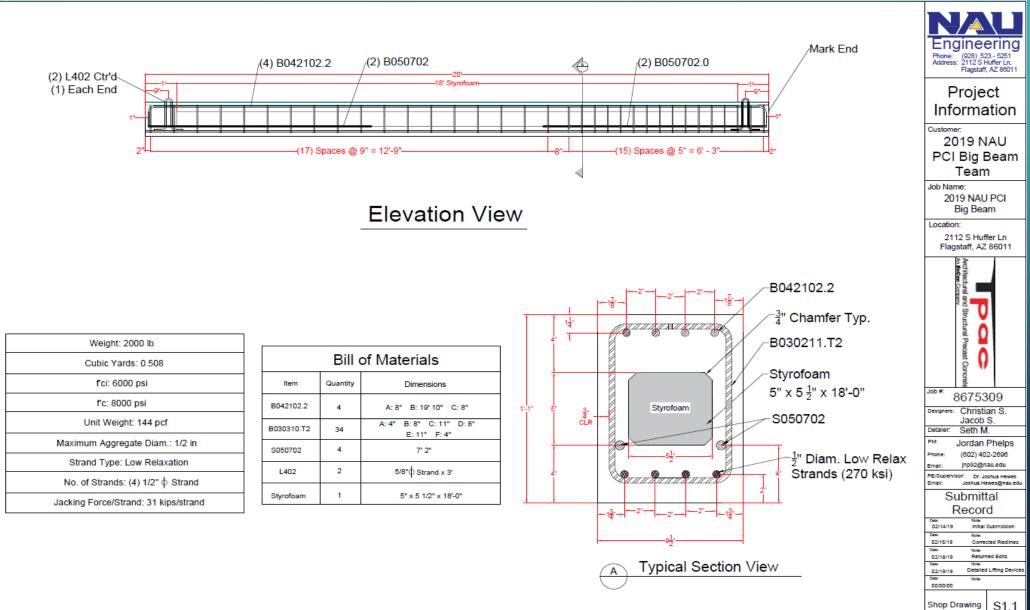
$$M_n = A_{ps}f_{ps}(d_p - \frac{a}{2}) + A_s f_y (d - \frac{a}{2}) + A'_s f'_s (\frac{a}{2} - d')$$

Eq. 2 Nominal Capacity [3]

$$f_r = 7.5\lambda \sqrt{f_c'}$$

Eq. 3 Rupturing Stress [3]

- M_{CR} = Cracking moment S_b = Section modulus P = Prestress force A = Cross section area e = Eccentricity
- $f_r = Rupturing stress$


 M_n = Nominal capacity A_{PS} = Area of prestress A_S = Area of tension Steel A'_S = Area of compression Steel d_P = Depth of prestressing d = Depth of tension steel d' = Depth of compressive steel f_y = Yield stress of steel f_{PS} = Nominal stress of restress strands a = Depth of compressive stress block

DECISION MATRIX

Table 2: Cross Section Decision Matrix

Section	Shape	Weight (lb)	Gross Area (in ²)	Cost	Formwork
Shallow T- Beam		3960	198	\$284.33	Difficult
T-Beam		2640	132	\$262.66	Difficult
LW Hollow Box		1940	114	\$257.13	Moderate
NW Hollow Box		1960	98	\$204.03	Moderate
I-Beam		3400	177	\$328.24	Difficult

FINAL BEAM SELECTION

PROCUREMENT / FABRICATION

Figure 10 Formwork [2]

Figure 11 Screeding of Concrete [2]

Figure 12 Final Cast [2]

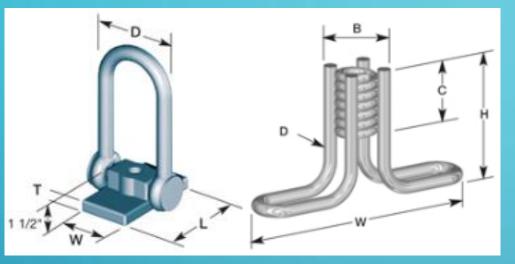


Figure 13 CX-28 Coil Wingnut & LP-11 Swivel Lifting Plate [4]

10

Figure 14 Formwork [2]

Figure 15 Resting Beam [2]

© RESPONSE 2000

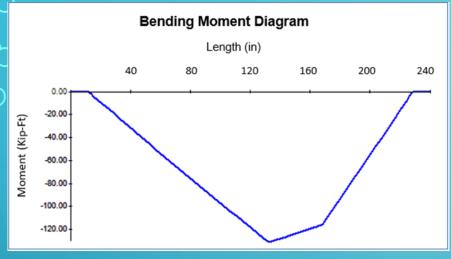


Figure 16 Response 2000 Bending Moment Diagram [5]

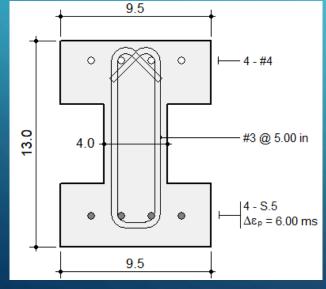


Figure 19 Response 2000 Modeled Cross-Section [5]

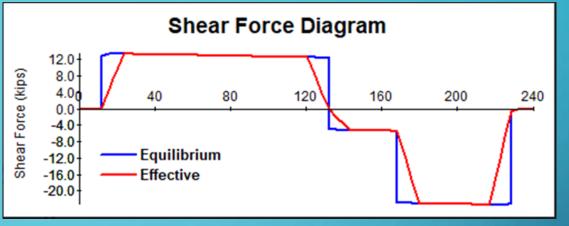
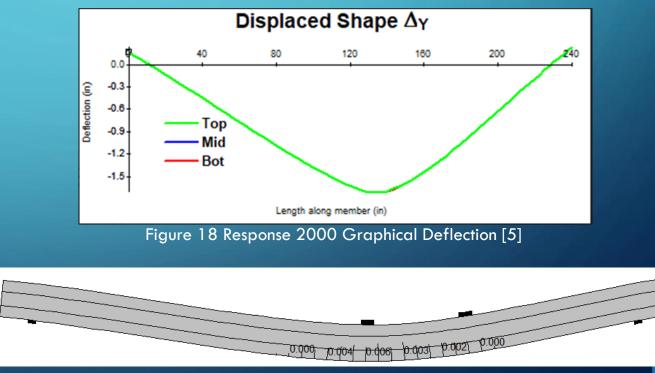



Figure 17 Response 2000 Shear Force Diagram [5]

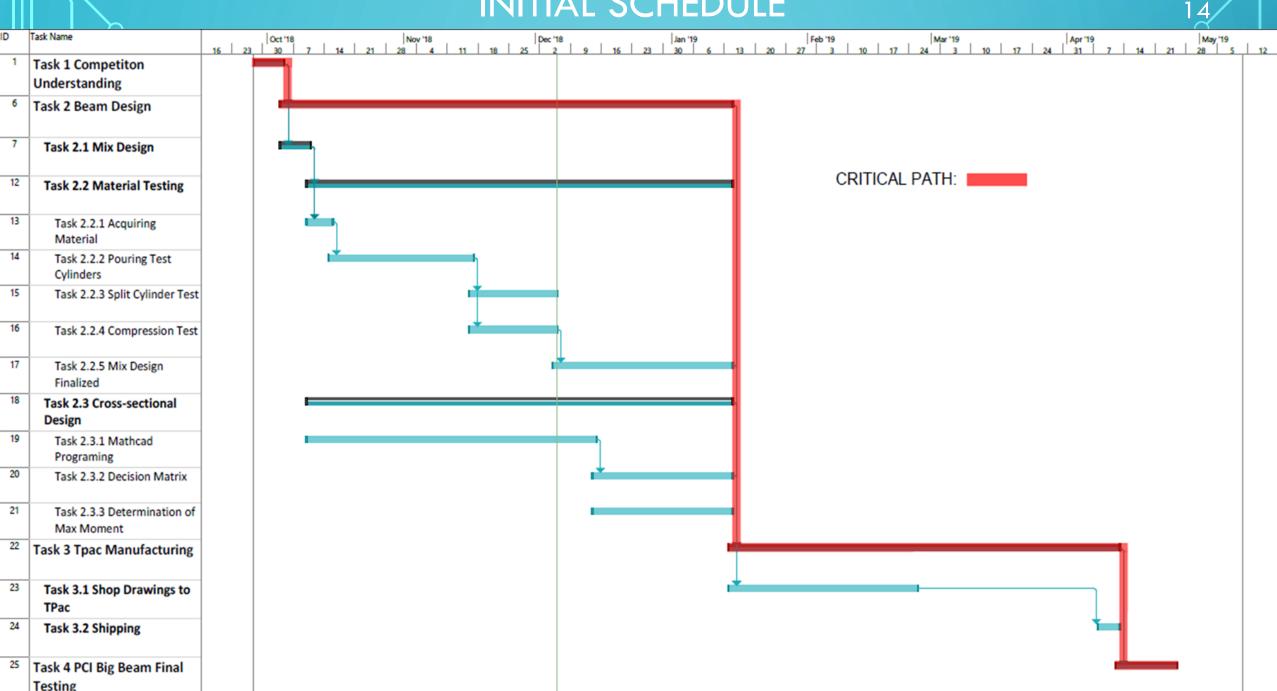
Figure 20 Response 2000 Modeled Curvature [5]

С

BEAM PRE-TESTING

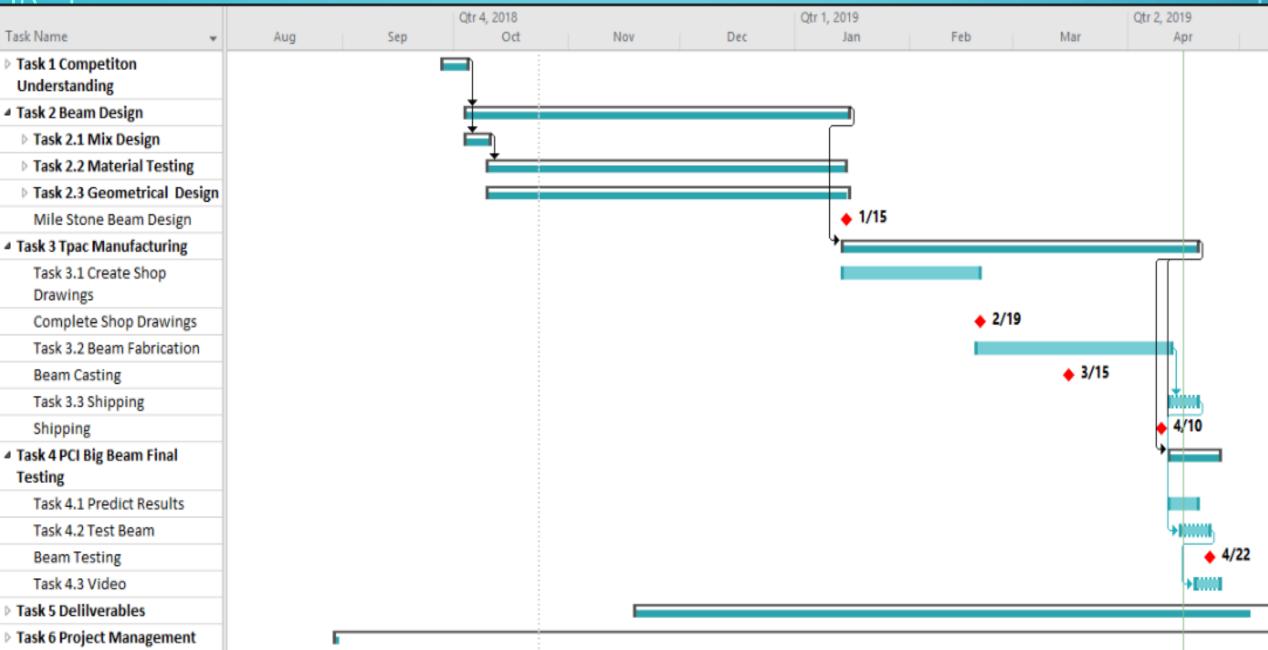
Table 3 Predicted Results

Category	Predicted
Cracking Load (kips)	21.2
Failure Load (kips)	36.4
Deflection (in)	2


Figure 21 Current State of Beam Setup [2]

BEAM POST-TESTING

Table 4 Testing Results


Category	Predicted	Test Results	% Difference
Cracking Load (kips)	21.2	NA	NA
Cracking Loda (kips)	21.2	INA	INA
Failure Load (kips)	36.4	NA	NA
	-		
Deflection (in)	2	NA	NA

INITIAL SCHEDULE

UPDATED SCHEDULE

PROPOSED PROJECT HOURS

Table 5 Proposed Project Hours

Task	Senior Engineer	Structural Engineer	Lab Technician	EIT	Task Hours
Task 1 – Competition Understanding	8	8	8	8	32
Task 2 – Beam Design	80	100	25	25	230
Task 3 — Tpac Manufacturing	10	25	10	30	75
Task 4 — Final Beam Testing	10	10	10	10	40
Task 5 – Deliverables	25	25	20	35	105
Task 6 – Project Management	35	35	30	30	130
Project Hours	168	203	103	138	612

> UPDATED HOURS

 \cap

Table 6 Updated Project Hours

Task	Senior Engineer	Structural Engineer	Lab Technician	EIT	Task Hours
Task 1 – Competition Understanding	5	5	5	5	20
Task 2 – Beam Design	120	140	80	72	412
Task 3 — Tpac Manufacturing	10	6	4	28	48
Task 4 — Final Beam Testing	2	2	2	2	8
Task 5 – Deliverables	32	15	15	74	136
Task 6 – Project Management	20	20	20	25	85
Project Hours	189	188	126	206	709

PROPOSED PROJECT COST

Table 7 Cost of Engineering Services

Personnel	Hours	Rate (\$/hour)	Cost
Senior Engineer	168	126	\$ 21,086
Structural Engineer	203	101	\$ 20510
Lab Technician	103	57	\$ 5,903
EIT	138	52	\$7,180
		Total	\$ 54,679

Proposed Project Cost = \$ 57,357

 \bigcap

	Table 8 1	ravel Cost	
Location	\$/mile	Miles	Fravel Cost
Cemex	\$ 0.55	20	\$11
Трас	\$ 0.55	300	\$ 165
Western Tech	\$ 0.55	10	\$6
		Total	\$ 182
Tal	ole 9 Subc	ontracting Co	ost
ltem	\$/Test	# of Tes	t Total Cost
Item Compression Test	\$/Test 104	# of Tes 12	Total Cost \$ 1248
Compression			

UPDATED PROJECT COST

 - 6			
	<u> </u>		1
	7	/	
-	\checkmark		

		3	
Personnel	Hours	Rate (\$/hour)	Cost (\$)
Senior Engineer	189	126	\$ 23,721
Structural Engineer	188	101	\$ 18,995
Lab Technician	126	57	\$ 7,221
EIT	206	52	\$ 10,718
		Total	\$ 60,655

Table 10 Cost of Engineering Services

О

 \square

Table 11 Travel Cost

Location	\$/mile	Miles	Travel Cost
Cemex	\$ 0.55	20	\$11
Трас	\$ 0.55	300	\$ 165
Western Tech	\$ 0.55	10	\$6
		Total	\$ 182

UPDATED PROJECT COST CONT.

Table 12 Beam Testing Cost

	ltem	Total Cost
	Plaster of Paris	\$5
	Load Cell	\$ 350
	Sensor Pots	\$ 300
	Fiber Optic Cables	\$ 75
	DAQ Software	\$ 100
	Compression Test	\$ 936
C	Total	\$ 1,766

Total Project Cost = \$ 62,603

[°]LEARNING OUTCOMES

- 1. Take advantage of the first semester.
- 2. Know time frame required by Tpac.
- 3. Better communication with Tpac.

REFERENCES

[1] "Precast/Prestress Concrete Institute," PCI, 2019. [Online]. [2] J. Phelps, Photo Taken, Flagstaff, 2018. [3] PCI Design Handbook, Chicago, 2004. [4] "Tpac: Providing Engineered Concrete Solutions," Tpac, 2019. [Online]. [5] E. Bentz, "Response 2000," University of Toronto, 2010. [Online]. [6] J. Phelps, Photo Taken, Flagstaff, 2018. [6] ACI Committee, ACI 318-14 Building Code Requirements, 2014. [7] "The Civil Engineering Daily," [Online]. [8] R. Crouch, "PCI Big Beam Competition 2017-2018", 2018.